Abstract
Amphibians defend against pathogens using skin microbial communities, in addition to innate and adaptive immunity. Despite skin microbial communities play a key role in the immune function of amphibians, few studies have focused on the changes in its composition and function. In the present study, we identified the variation in adaptive immunity, as well as the corresponding changes in skin microbiome of Bufo raddei living in a heavy metal polluted area. The adaptive immunity of B. raddei in heavy metal polluted area was significantly lower than that in relatively unpolluted area. Further, different skin bacterial communities were found in the two areas. In the heavy metal polluted area, Actinobacteria and Microbacterium were the dominant bacteria in the skin microbiome of B. raddei, which showed broad-spectrum antibacterial activity. Besides, the antibiotic synthesis was also increased in metabolic pathways. The present study suggested that the adaptive immunity of B. raddei was weakened under long-term heavy metal stress. However, the toads increased the abundance of bacteriostatic bacteria by regulating the composition of skin microbiome, which released a large number of bacteriostatic metabolites and enhanced the host resistance to external pathogens in turn.